3 WAYS TO SOLVE.... EXPONENTIAL EQUATIONS!

Same Base (one-to-one)		
Steps	Example	
1) Rewrite each base so they are the same.		
2) Equal the powers to each other.		
3) Solve for x.		

2 Substitution Using Logarithms (inverse operation)	
Steps	Example
Apply the inverse to each side by taking logarithm.	the
2) Use the Power Rule (Logarithmic Propertie	es).
3) Solve for x.	

Converting to a Logarithmic Equation	
Steps	Example
Rewrite the equation so it is in Logarithmic form.	
2) Solve for x.	

3 WAYS TO SOLVE.... EXPONENTIAL EQUATIONS!

Same Base (one-to-one)	
Steps	Example
1) Rewrite each base so they are the same.	$2^{2(-2x)} = 2^{6}$
2) Equal the powers to each other.	-4x = 6
3) Solve for x.	-4 -4 X= -3

Using Logarithms (i	Using Logarithms (inverse operation)	
Steps	Example	
Apply the inverse to each side by taking the logarithm.	log 4-2x = log 64	
2) Use the Power Rule (Logarithmic Properties).	-2xlog 4 = log 64	
3) Solve for x.	$-2\log 4 - 2\log 4$ $X = \frac{\log 64}{-2\log 4} = -\frac{3}{2}$	

3 Converting to a	Converting to a Logarithmic Equation		
Steps	Example		
Rewrite the equation so it is in Logarithmic form.	$\log_4 64 = -2x$		
2) Solve for x.	$\chi = \frac{-2}{109464} = -\frac{3}{2}$		